publications

2024

  1. UNAST: Unified framework for Neural Architecture Search for Transformers
    Ilia Markov, Chenhan D. Yu, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jan Kautz, and 2 more authors
    2024
    submitted to NeurIPS’24
  2. Sparse Expansion and Neuronal Disentanglement
    Shashata Sawmya, Linghao Kong, Ilia Markov, and Nir N Shavit Dan Alistarh
    2024
    submitted to NeurIPS’24

2023

  1. Quantized Distributed Training of Large Models with Convergence Guarantees
    Ilia Markov, Adrian Vladu, Qi Guo, and Dan Alistarh
    2023
    ICML’23
  2. QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language Models
    Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, and 2 more authors
    2023
    submitted to ACL’24

2022

  1. L-GreCo: An Efficient and General Framework for Layerwise-Adaptive Gradient Compression
    Ilia Markov*, Mohammadreza Alimohammadi*, Elias Frantar, and Dan Alistarh
    2022
    MlSys’24
  2. CGX: Adaptive System Support for Communication-Efficient Deep Learning
    Ilia Markov, Hamidreza Ramezanikebrya, and Dan Alistarh
    In Proceedings of the 23rd Conference on 23rd ACM/IFIP International Middleware Conference, 2022
    Best Paper Award Runner-Up

2021

  1. Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent
    Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, and Dan Alistarh
    Proceedings of the AAAI Conference on Artificial Intelligence, May 2021
  2. NUQSGD: Provably Communication-Efficient Data-Parallel SGD via Nonuniform Quantization
    Ali Ramezani-Kebrya, Fartash Faghri, Ilia Markov, Vitalii Aksenov, Dan Alistarh, and Daniel M. Roy
    J. Mach. Learn. Res., Jul 2021
  3. Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group Key Agreement
    Karen Klein, Guillermo Pascual-Perez, Michael Walter, Chethan Kamath, Margarita Capretto, Miguel Cueto, and 4 more authors
    In 2021 IEEE Symposium on Security and Privacy (SP), Jul 2021
    Work is done during the rotation in Pietrzak group

2020

  1. Adaptive Gradient Quantization for Data-Parallel SGD
    Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh, Daniel M Roy, and Ali Ramezani-Kebrya
    In Advances in Neural Information Processing Systems, Jul 2020